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Abstract: When a charged particle moves parallel and close to the surface of a metasurface,
intense Smith-Purcell radiation can be observed at resonant frequencies. Here, we present a
systematic investigation on the Smith-Purcell radiation and evanescent-to-propagating wave
conversion in metal-groove metasurfaces. Based on a coupled mode theory, analytic formulas are
derived for the resonant frequency, Q-factor, and wave conversion efficiency at resonant frequency.
The accuracy of the formulas is verified by numerical simulations. It is found that the resonant
frequency and Q-factor depend on the depth and filling ratio of the grooves, respectively. A high
Q-factor can be obtained by decreasing the filling ratio of the grooves. As the Q-factor increases,
the wave conversion efficiency at resonant frequency increase but exhibits an upper limit. Such
an upper bound of efficiency (Cr,max = 4) can be approached at a moderate Q-factor (Q= 16) or
an optimal filling ratio of the grooves (fs = 0.05). Our results may benefit the construction of
compact high-power free-electron light sources.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In 1953, Smith and Purcell demonstrated that when a charged particle moves parallel and close to
the surface of a metallic diffraction grating, it can drive the grating to emit electromagnetic (EM)
radiation [1]. Unlike traditional Cherenkov effect [2], such Smith-Purcell emission can occur
even at a particle velocity much lower than the light speed in vacuum. Hence, this phenomenon
is easier to observe, which forms the basis of many significant applications including radiation
generators and particle detectors [3–10].
Metasurfaces are a novel class of two-dimensional EM materials, enabling fascinating EM

properties and functionalities [11–19]. Unlike common diffraction gratings, metasurfaces are
composed of EM subwavelength resonator arrays. It has been recently discovered that at resonant
frequencies, metasurfaces can exhibit higher efficiency in producing Smith-Purcell emission
than traditional gratings [20–31]. In particular, using metasurfaces of periodic metallic groove
arrays, unidirectional Smith-Purcell emission can be efficiently generated above the metasurfaces
[8,30,31]. High-intensity fields are located in the vacuum region rather than the metallic part of
the metasurfaces, enabling high power output of radiations. For such resonant Smith-Purcell
emission [21,22], a fundamental picture is that the evanescent waves bounded to swift charged
particles can be converted into propagating waves more efficiently by the metasurfaces. However,
a comprehensive investigation has not been presented on the relationship between the wave
conversion efficiency and structural parameters for the metal-groove metasurfaces.

In this paper, we systematically study the Smith-Purcell radiation and evanescent-to-propagating
wave conversion in metal-groove metasurfaces. Based on a coupling mode theory, we can derive
analytic formulas for the resonant frequency, Q-factor, and evanescent-to-propagating wave
conversion efficiency. The accuracy of formulas is verified by finite-element simulations. It is
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found that the resonant frequency and Q-factor of the metasurfaces are related to the depth and
width of grooves, respectively. For ideal metal-groove metasurfaces, the Q-factor increases with
decreasing the filling ratio of grooves. As the Q-factor increases, the wave conversion efficiency
increases at resonant frequency but possesses an upper bound. Such an upper limit of efficiency
(Cr,max = 4) can be approached at a moderate Q-factor (Q= 16) or an appropriate filling ratio of
grooves (fs = 0.05).

2. Theory

The metasurface under study is a metallic slab with a periodic groove array at its upper surface,
as shown in Fig. 1(a). The metasurface is located at vacuum and its upper surface is at z= 0. The
grooves have a period p and width ∆ in the x direction, and a depth h in the z direction.

Fig. 1. (a) Schematic of the Smith-Purcell emission from a metal-groove metasurface
consisting of a metallic slab with a periodic groove array. The grooves have a period of p,
depth of h, and width of ∆. The metasurface is in the x-y plane and the grooves are along
the y direction. Above and close to the metasurface, a uniform sheet of charged particles
moves with a velocity v along the x direction. Consequently, evanescent waves 1 and 2, and
propagating waves 3, 4, and 5 can occur in the system, with magnetic fields along the y
direction. (b) A unit cell for the metasurface in (a).

At z= z0 (above the metasurface) exists an uniform sheet of charged particles, which has a
line charge density q in the y direction and moves with a velocity v along the x direction. The
corresponding current density can be written as J =

∫ +∞
0 x̂I0δ(z − z0) exp(ikx1x − iωt)dω, where

I0 = q/2π, kx1 =ω/v, ω= 2πf is the angular frequency, and f is the frequency [22,23]. Hence,
evanescent wave 1 can be generated below the swift charged particles. Its magnetic field is
along the y direction and can be expressed as H =

∫ +∞
0 H1 exp(ikx1x + ikz1z − iωt)dω, where

H1 = I0 exp(−ikz1z0)/2 is the H-field with frequency f at z= 0, kz1 = −i
√

k2x1 − k20, k0 = ω/c, and
c is the light velocity in vacuum.
Due to the periodicity of the metasurface [see Fig. 1(b)], the H-field with frequency f in the

region I (0< z < b) can be approximately written as

HI = H1 exp(ikx1x + ikz1z) + H2 exp(ikx1x − ikz1z) + H3 exp(ikx3x + ikz3z), (1)

where the first term represents the incident evanescent wave 1, the second term relates to the
reflected evanescent wave 2 (i.e., the zeroth-order diffraction), and the third term is for the
propagating wave 3 (i.e., the -1st order diffraction) with kx3 = kx1 − 2π/p and kz3 =

√
k20 − k2x3.
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Diffracted waves with other orders are very evanescent and will slightly affect the results [see
Figs. 3 and 4]. The H-field inside the metal groove [see Fig. 1(b)] can be approximately expressed
as

HII = H4 exp(ikz4z) + H5 exp(−ikz4z) (2)
where the first and second terms denote the downward and upward propagating waves 4 and
5, respectively, and kz4 = −k0. Higher-ordered waves with form of exp(ikz4z) cos(kx4x) (where
kz4 =

√
k20 − k2x4, kx4 = jπ/∆, j= 1, 2, 3 . . . ) can also occur in the grooves. However, for long

wavelengths with λ>2∆, such waves become evanescent (kx4>k0 and thus kz4 is imaginary) and
thus is neglected here.
For a unit cell of the metasurface (see Fig. 1(b)), the linking conditions at z= 0 are

HI = HII for 0<x<∆, (3)

∂

∂z
HI =


∂
∂zHII for 0<x<∆

0 for ∆<x<p
. (4)

Multiplying Eq. (3) by
∫ ∆
0 dx, Eq. (4) by

∫ p
0 exp(−ikx1x)dx, and Eq. (4) by

∫ p
0 exp(−ikx3x)dx we

have
b1(H1 + H2) + b2H3 = H4 + H5, (5)

b3(H1 − H2) = H4 − H5, (6)
b4H3 = H4 − H5, (7)

where b1 = ∆−1
∫ ∆
0 exp(ikx1x)dx, b2 = ∆−1

∫ ∆
0 exp(ikx3x)dx, b3 = kz1p/[kz4

∫ ∆
0 exp(−ikx1x)dx],

and b4 = kz3p/[kz4
∫ ∆
0 exp(−ikx3x)dx]. Due to the total reflection at the bottom of the metallic

groove, we have also
H5 = b5H4, (8)

where b5 = exp(i2k0h). From Eqs. (5)–(8), we can obtain the H-field intensity of propagating
wave 3

|H3 |
2 = Cr |H1 |

2, (9)
where Cr is the evanescent-to-propagating wave conversion efficiency

Cr = 4
����−b2

b1
+
(1 + b5)b4
(1 − b5)b1

+
b4
b3

����−2. (10)

For narrow grooves (∆ � p) and long wavelengths (p � λ so that kz1 ≈ −ikx1 and kz3 ≈ k0),
we have b1 ≈ b2 ≈ 1, b3 ≈ ikx1/(k0fs), and b4 ≈ −fs−1, where fs = ∆/p is the filling ratio of the
grooves. For frequencies near resonances (i.e. 2k0h = (2m − 1)π + δ with m being a positive
integer and |δ | � 1, so that (1 + b5)/(1 − b5) ≈ −iδ/2), Eq. (10) can be approximately written as

Cr =
4

1 + 4Q2(f /fR − 1)
, (11)

where the resonant frequency and Q-factor are given by

fR =
c(2m − 1)

4(h + fs/kx1)
, Q =

(2m − 1)π
4fs

. (12)

The conversion efficiency Cr can reach its maximum 4 at resonant frequency, and become half
maximum at frequency of fR(1 ± Q/2). For the fundamental resonant mode with m= 1, we have

fR =
c

4(h + fs/kx1)
, Q =

π

4fs
. (13)

In the above derivation, the incident evanescent wave 1 has a parallel wavenumber with
2π/p − k0 ≤ kx1 ≤ 2π/p + k0, so that 1D spoof surface plasmon polaritons (SPPs) can be excited
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in the metal-groove metasurface. However, different from the previous cases with |kx1 | ≤ π/p
[32,33], the spoof SPPs here possess larger parallel wavenumber, which can thus be folded above
the light lines and exhibit radiation loss (i.e. propagating wave 3 is generated).

3. Results from theory and simulations

To verify the theory presented above, we conduct finite-element simulations for the metal-groove
metasurfaces by using a commercial software (COMSOL MULTIPHYSICS) with finite-element
method [22,23]. The metallic grooves are made of perfect electric conductor (PEC) and have a
period p= 60 µm and depth h= 0.8p. The wave source is set to be either a downward evanescent
wave or harmonic electric current source, which has a parallel wavenumber kx1 and frequency
f and corresponds to swift charged particles with velocity of v= pf. The calculated frequency
range will include the fundamental resonant frequency fR ≈ c/4(h + fsp/2π) of the metal-groove
metasurface. We focus on the case of kx1 = 2π/p where the wave 3 generated propagates along
the z direction (i.e., kx3 = 0). It should be mentioned that all orders of the diffracted waves are
included in the simulations. To obtain the amplitude of propagating wave 3, the Poynting vector
needs to be calculated above the source [23].
Figure 2(a) shows the simulated evanescent-to-propagating wave conversion efficiency Cr

for a metallic groove array with fs = 0.1. We can see that the conversion efficiency exhibits a
maximum of 3.88 at resonant frequency fR = 0.29c/p = 1.45 THz. The corresponding Q-factor
is 7.9, higher than that of Babinet metasurface (4.4). Such results are very close to those
(fR = 0.306c/p = 1.53 THz and Q= 7.9) from Eq. (10).

Fig. 2. (a) Conversion efficiency Cr as a function of frequency for the metal-groove
metasurface in Fig. 1(a). The incident evanescent wave 1 has a parallel component of
wavevector kx1= 2π /p, and the outgoing propagating wave has a wavevector along the z
direction (i.e., kx3= 0). The metasurface is made of perfect electric conductor, and has
parameters of p= 60 µm, h= 0.8p, and ∆= 0.1p. The conversion efficiency has a maximum
at resonant frequency fR . (b) and (c) Distribution of |H | and Re(H) at fR in a unit cell
of the metasurface, respectively. In (b), red and white colors relates to positive and zero
values. In (c), red and blue colors corresponds to positive and negative values. The swift
charged particles have parameters of I0= 1 A/m, v= pfR, z0= p/5. The results are obtained
by finite-element simulations.

The distribution of H-field in a unit cell is also calculated at resonant frequency, as shown in
Figs. 2(b) and 2(c). Here, the swift charged particles are located at z= 0.2p. It can be seen that
the amplitude of H-field exhibits local maxima at both the plane of moving charges (z= z0) and
the bottom of the metallic groove (z= -h) [Fig. 2(b)]. The depth of the metallic groove is about
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a quarter of the fundamental resonant wavelength. The Smith-Purcell radiation (i.e., wave 3)
propagates indeed along the z direction [Fig. 2(c)].

On the basis of finite-element simulations, the spectra of conversion efficiency Cr are also been
calculated for metasurfaces with different filling ratios of metal grooves [see Fig. 3]. We can see
that for a large filling ratio (fs = 0.4), the Q-factor is small (Q= 2.07), resulting in a moderate
conversion efficiency (Cr,R= 2.05) at resonant frequency. As the filling ratio decreases (fs = 0.2),
a larger Q-factor is found (Q= 4.06), giving rise to a larger conversion efficiency (Cr,R= 3.43)
at resonant frequency. But for filling ratios smaller than 0.1, the conversion efficiency remains
almost constant (Cr,R= 4) although higher Q-factors are found. Such results are close to those
from Eq. (10).

Fig. 3. Conversion efficiencies as a function of frequency for metal-groove metasurfaces
with different groove width. (a) ∆= 0.4p, (b) ∆= 0.2p, (c) ∆= 0.1p, and (d) ∆= 0.01p. Other
parameters are the same with those in Fig. 2(a). The black and red curves are obtained by
finite-element simulations and Eq. (10), respectively.

Figure 4 illustrates the resonant frequency fR, Q-factor, and evanescent-to-propagating wave
conversion efficiency at fR as a function of the filling ratio fs of metal grooves. We can see that for
wide metal grooves (fs > 0.3), the resonant frequency decreases with decreasing the filling ratio
of grooves [Fig. 4(a)]. But for narrow metal grooves (fs < 0.3), the resonant frequency increases
with decreasing the filling ratio of grooves and approaches to a constant (fR ≈ c/4h). In addition,
the Q-factor is found to increase linearly with increasing 1/fs [Fig. 4(b)]. However, the conversion
efficiency Cr,R at resonant frequency increases with decreasing the filling ratio fs, but possesses
an upper bound [Cr < 4, see Fig. 4(c)]. At fs=0.05, the conversion efficiency Cr,R is 3.97, very
close to the upper bound of 4. Correspondingly, the conversion efficiency Cr,R can increase
with increasing the Q-factor, whereas it will be very close to the upper bound (Cr,max = 4) when
Q> 16 (or fs < 0.05). The simulated results and theoretical ones (from Eq. (10)) agree well with
each other, and the discrepancies come from the neglect of high-order diffracted waves in the
derivation of Eq. (10).
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Fig. 4. (a) Resonant frequency fR, (b) Q-factor, (c) conversion efficiency Cr at fR and (d)
Cr /Q as a function of the ratio of groove width to period. Other parameters are the same
with those in Fig. 3. The black and red curves are for metal-groove metasurfaces made of
perfect electric conductor, which are obtained by finite-element simulations and Eq. (10),
respectively. The green curves are obtained by finite-element simulations for Au-groove
metasurfaces with p= 60 µm. Other parameters are the same with those in Fig. 4.

The results presented above are for PEC groove arrays where absorption is neglected. We
also simulate Au groove arrays with p= 60 µm and h= 0.8p [see the green curves in Fig. 4].
Here, the dielectric constant of Au is described by a Drude model [34]. We can see that for
wide Au grooves (fs > 0.005), the Q-factor can increase with decreasing the filling ratio fs of
grooves [see Fig. 4(a)]. At an optimal filling ratio (fs= 0.005), the Au groove array exhibits a
maximal Q-factor (Qmax= 118). Due to the existence of absorption, the Q-factor decreases with
increasing the filling ratio fs for narrow Au grooves (fs < 0.005). Similar change can also be seen
for the conversion efficiency at resonant frequency [Fig. 4(b)]. However, the maximal conversion
efficiency occurs in a relative large filling ratio (fs = 0.05).

We note that both monochromaticity and output power are important indices of light sources.
For free-electron light sources based on metasurfaces, monochromaticity is related to the Q-factor
whereas the output power depends on a figure of merit F ≡ Cr/Q. For metal-groove metasurfaces
with fs = 0.05, a relatively high figure of merit (F = 0.26) can be obtained, much higher than the
value (F = 0.065) in the recently reported double dielectric resonant gratings [26]. In fact, a
higher figure of merit (F = 0.98) is available by using optimal filling ratio of grooves (fs= 0.4)
for the metal-groove metasurfaces (Cr= 2.04, Q= 2.08). The results indicate that metal-groove
metasurfaces are good candidates for constructing high-power free-electron light sources.

4. Summary

In summary, we have presented a coupled mode theory to describe the Smith-Purcell radiation
and evanescent-to-propagating wave conversion in metal groove metasurfaces. Analytic formulas
are derived for the resonant frequency, Q-factor, and wave conversion efficiency at resonant
frequency. The accuracy of the formulas is verified by finite-element simulations. It is found that
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for perfect-metal groove metasurfaces, the Q-factor can increase monotonically with decreasing
the filling ratio of grooves. The conversion efficiency at resonant frequency can also increase
with increasing the Q-factor, but exhibits an upper bound of 4. Such an upper limit of efficiency
(Cr,max = 4) can be approached at a moderate Q-factor (Q= 16) or an optimal filling ratio of
grooves (fs= 0.05). Since the field is mainly located in the vacuum rather than the metallic part
of the metasurfaces, the upper bound of efficiency can also be attained in practical Au-groove
metasurfaces with absorption. Our results provides a comprehensive picture for the Smith-Purcell
radiation in metal-groove metasurfaces and may benefit the construction of compact high-power
free-electron light sources.
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